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Abstract 

Reinforcement Learning (RL) is an area of machine learning 
where an agent learns by interacting with the environment by 
taking a sequence of actions to gain rewards on accomplishing 
some goal.  The aim here is gain maximum cumulative rewards 
by taking the best possible actions.  The environment is a model 
that represents the real-world problem/scenarios where decisions 
need to be made to achieve an end goal. Some of the examples of 
such environments are games, autonomous driving etc. In our 
problem we designed a game environment from scratch that is 
used for generating and solving dynamic perfect mazes. We used 
two reinforcement algorithms Q-learning and Multi agent Sarsa 
to solve these mazes. We compared the performance of these 
reinforcement learning algorithms with a maze solving algorithm. 
The result showed that Q-learning and Sarsa gave better result 
than Wall Follower algorithm in term of the number of steps tak-
en to reach the goal. They can also solve the maze with a projec-
tile. However, the solving becomes more difficult the bigger the 
maze is. 

 Introduction  

 Maze is a combination of paths and walls in a con-
strained space. The objective of solving a maze is usually 
for the player to find the path connecting the entry/starting 
point to the exit/ending point. For this project, we will use 
dynamic perfect maze. A perfect maze has a layout that 
does not have any circular paths or isolated spaces. For this 
project, we used dynamic perfect maze. The perfect here 
means that the maze layout does not have any circular 
paths and any isolated space. Whereas, the dynamic means 
that the maze layout will be created automatically using 
Maze Generating Algorithms such that every time the algo-
rithms are run, they will create a new maze layout. In this 
way, we can create as many experiment set as possible. We 
used Depth First as the Generating Algorithms and Wall 
Follower as the Solving Algorithm. 
 Because of the different layout and size of the dynamic 
maze, it is better for us if we use a model free RL algo-
rithms. That is the reason we used Q-learning and Sarsa as 
the RL algorithms. Both are model-free algorithms. The 
difference is that Sarsa learns action values while follow-

 
* Both authors are CS5033 students - Machine Learning 2020 

ing the policy, whereas Q-learning does the learning using 
greedy policy approach. 
 The novelty of our project is that, to the best of our 
knowledge, there is no literature that compares RL algo-
rithm with Maze solving algorithm in solving dynamic 
perfect mazes. There is also no literature of solving dynam-
ic perfect mazes with a projectile using RL algorithms. We 
implemented our own version of Sarsa with multiple 
agents and multi-threading. 

Contributions 

 We divided the project work as follows. Yonathan was 
the major contributor for building the maze environment, 
Depth First Search Maze Generating Algorithm, Wall Fol-
lower maze Solving Algorithm, Q-learning, and projectile 
movement.  
 Omkar was the major contributor for building Sarsa al-
gorithm, Multi agent Sarsa algorithm, running experiments 
and plotting the results. 

Related Work 

 The first reference (Osmanković and Konjicija 2011) 
reports their work on implementing Q-learning to solve a 
maze. They used MATLAB implementation of the Q-
learning and Prim dynamic maze generator. They meas-
ured the system performance by execution time and aver-
age number of iterations. Our project took a similar ap-
proach in terms of using Q-learning to solve dynamic 
maze. However, there are several differences when we 
compare them. First, we built our RL algorithms and maze 
generator from scratch. Second, other than Q-learning, we 
also built Sarsa and Multi Agent Sarsa. Moreover, we also 
compared the RL performance with a maze solving algo-
rithm: Wall Follower. Nonetheless, the paper gives a clear 
explanation regarding the method and the implementation. 
 The second reference (Stapelberg and Malan 2019) de-
scribes the attempt of conducting an analysis of a system 
that combines Reinforcement Learning, Fitness Land-
scapes, and Local Optima Networks to solve three problem 
instances: Vacuum world, Mazes, and Fruit collection task. 
Although they made their system to solve the problems, 
compared to our system, their work’s aim was more into 



investigating the RL global structure. That is the first dif-
ference. The second difference is that they used five static 
mazes as their experiment materials, whereas we used dy-
namic mazes. Lastly, their system can only solve the maze 
in a small percentage of attempts. Despite the differences, 
we adopted some of their maze modelling approach, such 
as:  the rectangular representation of the maze and cells, 
the agent can only observe their immediate surrounding 
environment, the agent must find the shortest possible path, 
and the path is starting from top-left corner. 
 The third reference (Takadama and Fujita 2004) mainly 
does the comparison of results obtained from simulations 
of Q-learning and SARSA in bargaining games to under-
stand the sensitivity of these learning methods and explore 
the criteria for using these methods. The paper uses bar-
gaining game where two agents implement different or 
same learning methods or to play the game. The goal is to 
achieve mutually beneficial agreement which is different 
from our problem domain of maze solving algorithms fall-
ing under the broad category of graph search. The results 
show that the payoff between the learning algorithms are 
the same while the negotiation process size differs, and 
SARSA attains superior results to Q-learning but with less 
rationale. These results indicate that discount factor might 
be an important criterion that should be selected based on 
the learning mechanisms as it affects the length of the ne-
gotiation process size. The other indication is, although 
some learning methods perform better, they might lack a 
good rationale in making decisions. So, if we want to un-
derstand the difference between rationale and performance 
in solving a problem, we need to use multiple agents with 
different learning algorithms to getter better insights. Thus, 
solving, using agents that use different learning mecha-
nisms, should be considered to understand the performance 
and rationale better.     
 The fourth reference (Vidhate and Kulkarni 2016) de-
scribes and compares how agents cooperate in a multiagent 
environment by various methods such as strategy sharing 
and joint rewards algorithm and cooperative multi agent 
learning algorithm to converge faster in huge search spac-
es. In strategy sharing, the agents learn from averaging the 
Q-tables of other agents. In joint rewards algorithm, they 
use joint rewards instead of rewards which is calculated by 
weighted sum of rewards from other agents to promote 
cooperation among agents. Then the paper talks about mul-
ti agent learning algorithm which has two parts, independ-
ent learning, and cooperative learning. At defined points, 
the agent collects the Q-tables of the other agents and cal-
culates the average of the Q-tables to be used in coopera-
tive learning. A modified version works by, instead of tak-
ing the average of the Q-tables, taking the weighted aver-
age of the Q-table based on the expertness of the agents 

and uses it in the cooperative learning to solve the rest of 
the algorithm. The new proposed algorithm showed better 
convergence. In our project, we built a modified version of 
Joint Rewards algorithm (multi agent Sarsa) using multi-
threading to solve the maze. 

Experiment Review 

Hypothesis  
 We hypothesized that reinforcement learning algorithms 
(Q-Learning, Sarsa and multi agent Sarsa) can solve dy-
namic perfect mazes in comparable performance, in terms 
of the number of steps taken by the agent to solve the 
maze, with non-reinforcement learning based Maze Solv-
ing algorithm. Furthermore, we hypothesized that (Sarsa 
and Q-Learning) algorithms can solve dynamic perfect 
maze while avoiding projectiles. 

Experiments 
 The maze is built using two-dimensional array. We used 
Wall and Cell Object for generating and solving the maze 
using Depth First Search and Wall Follower algorithm. For 
the Q-learning, Sarsa and multi agent Sarsa, we converted 
the array into simple integer array: zeros to denote cells 
and ones to denote walls. The Q-learning, Sarsa and multi 
agent Sarsa agent can move in four directions, namely 
north, south, east, and west. That means, our state repre-
sentation was in the form of {x, y, n, s, e, w}; where x and 
y represent the agent’s position, and n, s, e, and w repre-
sent the direction choices. In every step of the episodes, the 
agent must check whether the next state is valid or not. 
Validity here means that the next state must be a cell that 
the agent can move into, not a wall. The finishing condi-
tion is reached when the agent arrive at the bottom-left cell 
of the maze. In such case, the agent was given a reward of 
+1, otherwise, the reward was -0.01. We built every algo-
rithm used in the experiments by ourselves. 
 Experiment 1 was implemented using Q-learning with 
learning rate 0.2, discount rate 0.95, epsilon 0.2, 100 epi-
sodes, and 1000000 steps for each episode. We conducted 
this experiment for various maze sizes. 
 Experiment 2 was implemented using Sarsa with the 
same parameters as in experiment 1. We also experimented 
using several maze sizes. 
 Experiment 3 was implemented using multi agent Sarsa 
with the same parameters as in the experiment 1. In this 
experiment, we run four Sarsa agents concurrently. Every 
ten episodes, the algorithm picked the maximum Q (S, A) 
to be used for all agent for the next episodes. 



 Experiment 4 was implemented using Wall Follower 
solving algorithm. It is a deterministic algorithm in the 
sense that it always produces the same path result, given 
the same maze layout. We counted the number of steps 
produced and use this number to compare the performance 
of the previous experiments. 
 These four experiments are used to test our first hypoth-
esis. We use the number of steps taken by the agent to 
reach the goal as the metrics to decide whether the RL al-
gorithms can produce comparable result to Wall Follower. 
The next experiments test our second hypothesis. 
 Experiment 5 had a projectile that are moving vertically 
in the middle of the maze and can move through the walls, 
one cell/wall for each step. Whenever the agent hits the 
projectile, it will get -10 reward and the episode will be 
restarted. We used Q-learning with the same parameters 
for this experiment. 
 Experiment 6 used Sarsa with moving projectiles. The 
parameters and projectile’s attributes are the same as in 
experiment 5. 
 We used a simple metrics to prove the second hypothe-
sis. If the agent can reach the goal, despite the threat of a 
moving projectile, we consider it to be successful. 
 For doing the experiments and comparisons, we do them 
together. We divided the workload equally. 

Results and Analysis 

Figure 1. Q-learning (3x3 Maze) result. 

 Figure 1 shows the result of running 100 experiments for 
Q-learning algorithms. The line represents the averaged 
values from 30 experiments. After 100 episodes, it 
achieved around 25.4 as the total reward for 3 x 3 maze 
size. 

  

 
Figure 2. Sarsa (5x5 Maze) result. 

Figure 2 shows the result of running Sarsa algorithm for  

5 x 5 maze size. It achieved around 19.2 total reward after 
100 episodes. 

  
Figure 3. Sarsa (15x15 Maze) result. 

 
 Figure 3 shows the result of Sarsa algorithm on 15 x 15 
maze size. It achieved around -87 total reward at the end of 
the episodes. 
 Figure 2 and 3 show that our dynamic maze generating 
algorithm works fine and the RL algorithm can also solve 
mazes of different sizes. We also tried with various maze 
sizes and the results are consistent. 
 



 Figure 4.1. Multi agent Sarsa with 10-episode update rule 
on a 5x5 maze  

 Figure 4.1 shows the result of experiment 3. The Q (S, 
A) updates every ten episodes with epsilon 0.3 on a 5x5 
maze made the graph unstable with high variance. It may 
be due to inefficient implement a thread scheduling to pre-
vent for race condition while updating the Q-table. The 
other reason might be when solving small state spaces 
there might not be greater advantage using multiple agents 
for learning.  

Figure 4.2. Multi agent Sarsa with every episode update rule 
on a 35x35 maze 

 
 Figure 4.2 shows the result of experiment 3 variation. 
The multi agents’ Q (S, A) are updated on every episode 
with epsilon 0.1 on a 35x35 maze made the graph more 
stable with low variance. This shows that the more the 
agents communicate, the better they perform. The higher 
exploration may not be necessary when using multiple 
agents to learn in large state spaces.  
 

 For comparing the RL algorithms with Maze solving 
algorithm, we run 30 experiments and then measured the 
number of steps taken by agent to reach the goal. Out of 
those 30 experiments, 15 experiments are from 3 x 3 maze 
size, and 15 are from 4 x 4 maze size. Table 1 shows the 
result. For Multi Agent Sarsa, we did also 30 experiments, 
and then we took the best performing agent’s steps. In this 
case, we also use every episode update rule as shown in 
figure 4.2. 
 
 

Algorithm Average steps 

Wall Follower 19.7 

Q-learning 11.7 
Sarsa 11.7 

Multi Agent Sarsa 23.8 
 

Table 1. Average steps taken to reach the goal 

From the result, we can see that the performance of RL 
algorithms is comparable to that of Wall Follower algo-
rithm. In fact, they have better result. This proves that our 
first hypothesis is correct for the Sarsa and Q-learning. Our 
custom multi agent Sarsa cannot perform better than the 
Wall follower algorithm which shows that it needs much 
improvement, or the smaller states pace might be the rea-
son. 

 
Figure 5. Q-learning on 3x3 maze with a projectile. 

 

 Figure 5 shows the result of experiment 5. Whenever the 
agent hits the projectile, the graph took a dip. On the other 
hand, if the agent can reach the goal, the graph increased 
sharply. Despite the ups and downs, Q-learning managed 
to reach the goal on several episodes. 
 



 
 

Figure 6. Sarsa on 3x3 maze with a projectile. 

 Figure 6 shows the result of running Sarsa on 3 x 3 maze 
with a projectile. Like the Q-learning equivalent, the graph 
has its sharp decreases and increases. This shows that Sarsa 
managed to reach the goal on several occasions. 

 Figure 7. Multi Agent Sarsa on 3x3 maze with a projectile. 

Figure 7 shows the result of running multi agent Sarsa on 3 
x 3 maze with a projectile. The graph has its sharp decreas-
es and increases. This shows that multi agent Sarsa also 
managed to reach the goal on several occasions. 
  
We also tried to use different sizes of maze with a projec-
tile to test Q-learning and Sarsa whether they can reach the 
goal or not. We acquired the result that the bigger the maze 
size, the harder for the agent to reach the goal. Therefore, 
for our second hypothesis, the result shows that RL algo-
rithms can solve the maze despite the existence of a projec-
tile, but it is becoming more difficult when the maze size is 
increasing. 

Implementation and Learning 

 After making Q-learning, Yonathan learned that the al-
gorithm is powerful. The main pseudocode has only fewer 
than ten lines of code. Yet, it can outperform the Wall Fol-
lower algorithm and solve the maze-with-projectile prob-
lem. The only disadvantageous part of it is in designing the 
state representation of the maze problem and keeping track 
the maze world rules and the correct values for the data 
structures. 
 For Omkar, implementing Sarsa and comparing its per-
formance with other algorithm implementations made him 
having better insights about the algorithm. He also imple-
mented modified version of Sarsa called (Multi agent Sar-
sa) with multiple agents each running on its own thread 
using multi-threading in python. We understood the issues 
of multithreading and how to make use of multi agent 
learning algorithms to some degree. We also learned about 
different strategies by which agents share their knowledge 
to reach the goal state quicker. 

Summary 

 Q-learning and Sarsa can be used to solve dynamic per-
fect mazes as shown in the results. Compared to Wall Fol-
lower solving algorithm, the RL algorithms produced bet-
ter result. They can also solve the maze with a projectile, 
even though it is getting harder the bigger the maze be-
comes. 

Future Work 

 Implementing thread scheduling for collaborative sys-
tem among many agents in solving the maze is a direction 
for our future work. Implementing Strategy Sharing algo-
rithm for multi agent system is another path that we could 
pursue in the future. Changing the maze-projectile state 
representation such that it incorporates the projectile might 
give a better result. For example, since the projectile 
movement is based on the steps, when the agent hits the 
projectile, the algorithm will update the step in the state 
representation to a negative number. 
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