
Solving Dynamic Perfect Mazes Using RL-based Algorithms

Omkar Chekuri1 and Yonathan Hendrawan2
University of Oklahoma*

omkar.chekuri@ou.edu1, yfhendrawan@ou.edu2

Abstract

Reinforcement Learning (RL) is an area of machine learning
where an agent learns by interacting with the environment by
taking a sequence of actions to gain rewards on accomplishing
some goal. The aim here is gain maximum cumulative rewards
by taking the best possible actions. The environment is a model
that represents the real-world problem/scenarios where decisions
need to be made to achieve an end goal. Some of the examples of
such environments are games, autonomous driving etc. In our
problem we designed a game environment from scratch that is
used for generating and solving dynamic perfect mazes. We used
two reinforcement algorithms Q-learning and Multi agent Sarsa
to solve these mazes. We compared the performance of these
reinforcement learning algorithms with a maze solving algorithm.
The result showed that Q-learning and Sarsa gave better result
than Wall Follower algorithm in term of the number of steps tak-
en to reach the goal. They can also solve the maze with a projec-
tile. However, the solving becomes more difficult the bigger the
maze is.

 Introduction

 Maze is a combination of paths and walls in a con-
strained space. The objective of solving a maze is usually
for the player to find the path connecting the entry/starting
point to the exit/ending point. For this project, we will use
dynamic perfect maze. A perfect maze has a layout that
does not have any circular paths or isolated spaces. For this
project, we used dynamic perfect maze. The perfect here
means that the maze layout does not have any circular
paths and any isolated space. Whereas, the dynamic means
that the maze layout will be created automatically using
Maze Generating Algorithms such that every time the algo-
rithms are run, they will create a new maze layout. In this
way, we can create as many experiment set as possible. We
used Depth First as the Generating Algorithms and Wall
Follower as the Solving Algorithm.
 Because of the different layout and size of the dynamic
maze, it is better for us if we use a model free RL algo-
rithms. That is the reason we used Q-learning and Sarsa as
the RL algorithms. Both are model-free algorithms. The
difference is that Sarsa learns action values while follow-

* Both authors are CS5033 students - Machine Learning 2020

ing the policy, whereas Q-learning does the learning using
greedy policy approach.
 The novelty of our project is that, to the best of our
knowledge, there is no literature that compares RL algo-
rithm with Maze solving algorithm in solving dynamic
perfect mazes. There is also no literature of solving dynam-
ic perfect mazes with a projectile using RL algorithms. We
implemented our own version of Sarsa with multiple
agents and multi-threading.

Contributions

 We divided the project work as follows. Yonathan was
the major contributor for building the maze environment,
Depth First Search Maze Generating Algorithm, Wall Fol-
lower maze Solving Algorithm, Q-learning, and projectile
movement.
 Omkar was the major contributor for building Sarsa al-
gorithm, Multi agent Sarsa algorithm, running experiments
and plotting the results.

Related Work

 The first reference (Osmanković and Konjicija 2011)
reports their work on implementing Q-learning to solve a
maze. They used MATLAB implementation of the Q-
learning and Prim dynamic maze generator. They meas-
ured the system performance by execution time and aver-
age number of iterations. Our project took a similar ap-
proach in terms of using Q-learning to solve dynamic
maze. However, there are several differences when we
compare them. First, we built our RL algorithms and maze
generator from scratch. Second, other than Q-learning, we
also built Sarsa and Multi Agent Sarsa. Moreover, we also
compared the RL performance with a maze solving algo-
rithm: Wall Follower. Nonetheless, the paper gives a clear
explanation regarding the method and the implementation.
 The second reference (Stapelberg and Malan 2019) de-
scribes the attempt of conducting an analysis of a system
that combines Reinforcement Learning, Fitness Land-
scapes, and Local Optima Networks to solve three problem
instances: Vacuum world, Mazes, and Fruit collection task.
Although they made their system to solve the problems,
compared to our system, their work’s aim was more into

investigating the RL global structure. That is the first dif-
ference. The second difference is that they used five static
mazes as their experiment materials, whereas we used dy-
namic mazes. Lastly, their system can only solve the maze
in a small percentage of attempts. Despite the differences,
we adopted some of their maze modelling approach, such
as: the rectangular representation of the maze and cells,
the agent can only observe their immediate surrounding
environment, the agent must find the shortest possible path,
and the path is starting from top-left corner.
 The third reference (Takadama and Fujita 2004) mainly
does the comparison of results obtained from simulations
of Q-learning and SARSA in bargaining games to under-
stand the sensitivity of these learning methods and explore
the criteria for using these methods. The paper uses bar-
gaining game where two agents implement different or
same learning methods or to play the game. The goal is to
achieve mutually beneficial agreement which is different
from our problem domain of maze solving algorithms fall-
ing under the broad category of graph search. The results
show that the payoff between the learning algorithms are
the same while the negotiation process size differs, and
SARSA attains superior results to Q-learning but with less
rationale. These results indicate that discount factor might
be an important criterion that should be selected based on
the learning mechanisms as it affects the length of the ne-
gotiation process size. The other indication is, although
some learning methods perform better, they might lack a
good rationale in making decisions. So, if we want to un-
derstand the difference between rationale and performance
in solving a problem, we need to use multiple agents with
different learning algorithms to getter better insights. Thus,
solving, using agents that use different learning mecha-
nisms, should be considered to understand the performance
and rationale better.
 The fourth reference (Vidhate and Kulkarni 2016) de-
scribes and compares how agents cooperate in a multiagent
environment by various methods such as strategy sharing
and joint rewards algorithm and cooperative multi agent
learning algorithm to converge faster in huge search spac-
es. In strategy sharing, the agents learn from averaging the
Q-tables of other agents. In joint rewards algorithm, they
use joint rewards instead of rewards which is calculated by
weighted sum of rewards from other agents to promote
cooperation among agents. Then the paper talks about mul-
ti agent learning algorithm which has two parts, independ-
ent learning, and cooperative learning. At defined points,
the agent collects the Q-tables of the other agents and cal-
culates the average of the Q-tables to be used in coopera-
tive learning. A modified version works by, instead of tak-
ing the average of the Q-tables, taking the weighted aver-
age of the Q-table based on the expertness of the agents

and uses it in the cooperative learning to solve the rest of
the algorithm. The new proposed algorithm showed better
convergence. In our project, we built a modified version of
Joint Rewards algorithm (multi agent Sarsa) using multi-
threading to solve the maze.

Experiment Review

Hypothesis
 We hypothesized that reinforcement learning algorithms
(Q-Learning, Sarsa and multi agent Sarsa) can solve dy-
namic perfect mazes in comparable performance, in terms
of the number of steps taken by the agent to solve the
maze, with non-reinforcement learning based Maze Solv-
ing algorithm. Furthermore, we hypothesized that (Sarsa
and Q-Learning) algorithms can solve dynamic perfect
maze while avoiding projectiles.

Experiments
 The maze is built using two-dimensional array. We used
Wall and Cell Object for generating and solving the maze
using Depth First Search and Wall Follower algorithm. For
the Q-learning, Sarsa and multi agent Sarsa, we converted
the array into simple integer array: zeros to denote cells
and ones to denote walls. The Q-learning, Sarsa and multi
agent Sarsa agent can move in four directions, namely
north, south, east, and west. That means, our state repre-
sentation was in the form of {x, y, n, s, e, w}; where x and
y represent the agent’s position, and n, s, e, and w repre-
sent the direction choices. In every step of the episodes, the
agent must check whether the next state is valid or not.
Validity here means that the next state must be a cell that
the agent can move into, not a wall. The finishing condi-
tion is reached when the agent arrive at the bottom-left cell
of the maze. In such case, the agent was given a reward of
+1, otherwise, the reward was -0.01. We built every algo-
rithm used in the experiments by ourselves.
 Experiment 1 was implemented using Q-learning with
learning rate 0.2, discount rate 0.95, epsilon 0.2, 100 epi-
sodes, and 1000000 steps for each episode. We conducted
this experiment for various maze sizes.
 Experiment 2 was implemented using Sarsa with the
same parameters as in experiment 1. We also experimented
using several maze sizes.
 Experiment 3 was implemented using multi agent Sarsa
with the same parameters as in the experiment 1. In this
experiment, we run four Sarsa agents concurrently. Every
ten episodes, the algorithm picked the maximum Q (S, A)
to be used for all agent for the next episodes.

 Experiment 4 was implemented using Wall Follower
solving algorithm. It is a deterministic algorithm in the
sense that it always produces the same path result, given
the same maze layout. We counted the number of steps
produced and use this number to compare the performance
of the previous experiments.
 These four experiments are used to test our first hypoth-
esis. We use the number of steps taken by the agent to
reach the goal as the metrics to decide whether the RL al-
gorithms can produce comparable result to Wall Follower.
The next experiments test our second hypothesis.
 Experiment 5 had a projectile that are moving vertically
in the middle of the maze and can move through the walls,
one cell/wall for each step. Whenever the agent hits the
projectile, it will get -10 reward and the episode will be
restarted. We used Q-learning with the same parameters
for this experiment.
 Experiment 6 used Sarsa with moving projectiles. The
parameters and projectile’s attributes are the same as in
experiment 5.
 We used a simple metrics to prove the second hypothe-
sis. If the agent can reach the goal, despite the threat of a
moving projectile, we consider it to be successful.
 For doing the experiments and comparisons, we do them
together. We divided the workload equally.

Results and Analysis

Figure 1. Q-learning (3x3 Maze) result.

 Figure 1 shows the result of running 100 experiments for
Q-learning algorithms. The line represents the averaged
values from 30 experiments. After 100 episodes, it
achieved around 25.4 as the total reward for 3 x 3 maze
size.

Figure 2. Sarsa (5x5 Maze) result.

Figure 2 shows the result of running Sarsa algorithm for

5 x 5 maze size. It achieved around 19.2 total reward after
100 episodes.

Figure 3. Sarsa (15x15 Maze) result.

 Figure 3 shows the result of Sarsa algorithm on 15 x 15
maze size. It achieved around -87 total reward at the end of
the episodes.
 Figure 2 and 3 show that our dynamic maze generating
algorithm works fine and the RL algorithm can also solve
mazes of different sizes. We also tried with various maze
sizes and the results are consistent.

 Figure 4.1. Multi agent Sarsa with 10-episode update rule
on a 5x5 maze

 Figure 4.1 shows the result of experiment 3. The Q (S,
A) updates every ten episodes with epsilon 0.3 on a 5x5
maze made the graph unstable with high variance. It may
be due to inefficient implement a thread scheduling to pre-
vent for race condition while updating the Q-table. The
other reason might be when solving small state spaces
there might not be greater advantage using multiple agents
for learning.

Figure 4.2. Multi agent Sarsa with every episode update rule
on a 35x35 maze

 Figure 4.2 shows the result of experiment 3 variation.
The multi agents’ Q (S, A) are updated on every episode
with epsilon 0.1 on a 35x35 maze made the graph more
stable with low variance. This shows that the more the
agents communicate, the better they perform. The higher
exploration may not be necessary when using multiple
agents to learn in large state spaces.

 For comparing the RL algorithms with Maze solving
algorithm, we run 30 experiments and then measured the
number of steps taken by agent to reach the goal. Out of
those 30 experiments, 15 experiments are from 3 x 3 maze
size, and 15 are from 4 x 4 maze size. Table 1 shows the
result. For Multi Agent Sarsa, we did also 30 experiments,
and then we took the best performing agent’s steps. In this
case, we also use every episode update rule as shown in
figure 4.2.

Algorithm Average steps

Wall Follower 19.7

Q-learning 11.7
Sarsa 11.7

Multi Agent Sarsa 23.8

Table 1. Average steps taken to reach the goal

From the result, we can see that the performance of RL
algorithms is comparable to that of Wall Follower algo-
rithm. In fact, they have better result. This proves that our
first hypothesis is correct for the Sarsa and Q-learning. Our
custom multi agent Sarsa cannot perform better than the
Wall follower algorithm which shows that it needs much
improvement, or the smaller states pace might be the rea-
son.

Figure 5. Q-learning on 3x3 maze with a projectile.

 Figure 5 shows the result of experiment 5. Whenever the
agent hits the projectile, the graph took a dip. On the other
hand, if the agent can reach the goal, the graph increased
sharply. Despite the ups and downs, Q-learning managed
to reach the goal on several episodes.

Figure 6. Sarsa on 3x3 maze with a projectile.

 Figure 6 shows the result of running Sarsa on 3 x 3 maze
with a projectile. Like the Q-learning equivalent, the graph
has its sharp decreases and increases. This shows that Sarsa
managed to reach the goal on several occasions.

 Figure 7. Multi Agent Sarsa on 3x3 maze with a projectile.

Figure 7 shows the result of running multi agent Sarsa on 3
x 3 maze with a projectile. The graph has its sharp decreas-
es and increases. This shows that multi agent Sarsa also
managed to reach the goal on several occasions.

We also tried to use different sizes of maze with a projec-
tile to test Q-learning and Sarsa whether they can reach the
goal or not. We acquired the result that the bigger the maze
size, the harder for the agent to reach the goal. Therefore,
for our second hypothesis, the result shows that RL algo-
rithms can solve the maze despite the existence of a projec-
tile, but it is becoming more difficult when the maze size is
increasing.

Implementation and Learning

 After making Q-learning, Yonathan learned that the al-
gorithm is powerful. The main pseudocode has only fewer
than ten lines of code. Yet, it can outperform the Wall Fol-
lower algorithm and solve the maze-with-projectile prob-
lem. The only disadvantageous part of it is in designing the
state representation of the maze problem and keeping track
the maze world rules and the correct values for the data
structures.
 For Omkar, implementing Sarsa and comparing its per-
formance with other algorithm implementations made him
having better insights about the algorithm. He also imple-
mented modified version of Sarsa called (Multi agent Sar-
sa) with multiple agents each running on its own thread
using multi-threading in python. We understood the issues
of multithreading and how to make use of multi agent
learning algorithms to some degree. We also learned about
different strategies by which agents share their knowledge
to reach the goal state quicker.

Summary

 Q-learning and Sarsa can be used to solve dynamic per-
fect mazes as shown in the results. Compared to Wall Fol-
lower solving algorithm, the RL algorithms produced bet-
ter result. They can also solve the maze with a projectile,
even though it is getting harder the bigger the maze be-
comes.

Future Work

 Implementing thread scheduling for collaborative sys-
tem among many agents in solving the maze is a direction
for our future work. Implementing Strategy Sharing algo-
rithm for multi agent system is another path that we could
pursue in the future. Changing the maze-projectile state
representation such that it incorporates the projectile might
give a better result. For example, since the projectile
movement is based on the steps, when the agent hits the
projectile, the algorithm will update the step in the state
representation to a negative number.

References

Osmanković, D. and Konjicija, S., 2011, May. Implementation of
Q—Learning algorithm for solving maze problem. In 2011 Pro-
ceedings of the 34th International Convention MIPRO (pp. 1619-
1622). IEEE.

Stapelberg, B. and Malan, K.M., 2019, July. Global structure of
policy search spaces for reinforcement learning. In Proceedings
of the Genetic and Evolutionary Computation Conference Com-
panion (pp. 1773-1781).

Takadama, K. and Fujita, H., 2004. Q-learning and Sarsa agents
in bargaining game. in North American Association for Computa-
tional Social and Organizational Science (NAACSOS).

Vidhate, D.A. and Kulkarni, P.A. 2016, Enhanced Cooperative
Multi-Agent Learning Algorithms (ECMLA) using Reinforce-
ment Learning. 2016 International Conference on Computing,
Analytics and Security Trends (CAST), 556-561.

